Skip to main content

[1503.02776] The Emergence of Life as a First Order Phase Transition

We demonstrate a phase transition from non-life to life, defined as non-replicating and replicating systems respectively, and characterize some of its dynamical properties. The transition is first order and demonstrates many characteristics one might expect from a newly emergent biosphere. During the phase transition the system experiences an explosive growth in diversity, with restructuring of both the extant replicator population and the environment. The observed dynamics have a natural information-theoretic interpretation, where the probability for the transition to occur depends on the mutual information shared between replicators and environment. Through the transition, the system undergoes a series of symmetry breaking transitions whereby the information content of replicators becomes increasingly distinct from that of their environment. Thus, the replicators that nucleate the transition in the non-life phase are often not those which are ultimately selected in the life phase. We discuss the implications of these results for understanding the emergence of life, and natural selection more broadly.